Full metadata record
DC FieldValueLanguage
dc.contributor.author陳孟琪en_US
dc.contributor.author盧錦隆en_US
dc.contributor.author黃鎮剛en_US
dc.contributor.authorChin-Lung Luen_US
dc.contributor.authorJenn-Kang Hwangen_US
dc.date.accessioned2014-12-12T02:49:32Z-
dc.date.available2014-12-12T02:49:32Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009251512en_US
dc.identifier.urihttp://hdl.handle.net/11536/77494-
dc.description.abstract本研究是利用支持向量機器的方法來預測蛋白質中β-turn的位置。在僅有蛋白質之胺基酸序列的情況下找尋有用的特徵向量,並將這些資訊輸入支持向量機器中,以此方法來預測蛋白質中哪些殘基會形成β-turn。本研究使用426條非同源蛋白質,做7倍的交叉認證以驗證預測的準確率。由結果發現除了前人研究提及的多重序列比對及二級結構資訊外,殘基暴露於溶劑的程度亦可提供有用的資訊;而胺基酸的體積及親水程度則對β-turn的預測無明顯助益。 本研究整合了多重序列比對所產生的位置加權矩陣,二級結構預測資訊,以及殘基暴露於溶劑之程度的預測等三種特徵向量,則總準確率可達79.6%,MCC值可達0.48,皆高於其他β-turn預測方法。zh_TW
dc.description.abstractIn this study, we use support vector machine approach to predict β-turns in protein. With only the information of protein sequence, we try to find useful feature vectors based on amino acid, and import the information to SVM to predict which residue would be in β-turn. We use 426 non-homologous proteins as dataset, and 7-folded cross validation to examine the prediction performance. In addition to multiple sequence alignment and secondary structure information, we found that relative solvent accessibility could also provide useful information in β-turn prediction. In this work, import multiple feature vectors of multiple sequence alignment information (PSSM), secondary structure prediction, and relative solvent accessibility prediction, the Qtotal could reach 79.6% and the MCC value is 0.48. Both these two measure performance are better than other previous methods.en_US
dc.language.isoen_USen_US
dc.subject預測zh_TW
dc.subjectpredictionen_US
dc.subjectβ-turnen_US
dc.title基於支持向量機器方法之蛋白質β-turn預測zh_TW
dc.titlePrediction of β-Turns in Proteins with Support Vector Machinesen_US
dc.typeThesisen_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 151201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.