完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:10:15Z-
dc.date.available2014-12-08T15:10:15Z-
dc.date.issued2009-01-01en_US
dc.identifier.issn1094-6977en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TSMCC.2008.2002333en_US
dc.identifier.urihttp://hdl.handle.net/11536/7817-
dc.description.abstractThis study presents an evolutionary neural fuzzy network, designed using the functional-link-based neural fuzzy network (FLNFN) and a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of cooperative particle swarm optimization and cultural algorithm. It is thus called cultural cooperative particle swarm optimization (CCPSO). The proposed CCPSO method, which uses cooperative behavior among multiple swarms, can increase the global search capacity using the belief space. Cooperative behavior involves a collection of multiple swarms that interact by exchanging information to solve a problem. The belief space is the information repository in which the individuals can store their experiences such that other individuals can learn from them indirectly. The proposed FLNFN model uses functional link neural networks as the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the functional link neural networks. The FLNFN model can generate the consequent part of a nonlinear combination of input variables. Finally, the proposed FLNFN with CCPSO (FLNFN-CCPSO) is adopted in several predictive applications. Experimental results have demonstrated that the proposed CCPSO method performs well in predicting the time series problems.en_US
dc.language.isoen_USen_US
dc.subjectChaotic time seriesen_US
dc.subjectcultural algorithmen_US
dc.subjectfunctional-link networken_US
dc.subjectneural fuzzy networken_US
dc.subjectparticle swarm optimizationen_US
dc.subjectpredictionen_US
dc.titleA Hybrid of Cooperative Particle Swarm Optimization and Cultural Algorithm for Neural Fuzzy Networks and Its Prediction Applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCC.2008.2002333en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWSen_US
dc.citation.volume39en_US
dc.citation.issue1en_US
dc.citation.spage55en_US
dc.citation.epage68en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000262328400005-
dc.citation.woscount64-
顯示於類別:期刊論文


文件中的檔案:

  1. 000262328400005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。