Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiau, Jyh-Jen Horngen_US
dc.contributor.authorHuang, Hsiang-Lingen_US
dc.contributor.authorLin, Shuo-Huien_US
dc.contributor.authorTsai, Ming-Yeen_US
dc.date.accessioned2014-12-08T15:10:15Z-
dc.date.available2014-12-08T15:10:15Z-
dc.date.issued2009en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/11536/7819-
dc.identifier.urihttp://dx.doi.org/10.1080/03610920802702535en_US
dc.description.abstractThe monitoring of process/product profiles is presently a growing and promising area of research in statistical process control. This study is aimed at developing monitoring schemes for nonlinear profiles with random effects. We utilize the technique of principal components analysis to analyze the covariance structure of the profiles and propose monitoring schemes based on principal component ( PC) scores. The number of the PC scores used in constructing control charts is crucial to the detecting power. In the Phase I analysis of historical data, due to the dependency of the PC-scores, we adopt the usual Hotelling T(2) chart to check the stability. For Phase II monitoring, we study individual PC-score control charts, a combined chart scheme that combines all the PC-score charts, and a T(2) chart. Although an individual PC-score chart may be perfect for monitoring a particular mode of variation, a chart that can detect general shifts, such as the T(2) chart and the combined chart scheme, is more feasible in practice. The performances of the schemes under study are evaluated in terms of the average run length.en_US
dc.language.isoen_USen_US
dc.subjectAverage run lengthen_US
dc.subjectControl chartsen_US
dc.subjectNonlinear profile monitoringen_US
dc.subjectPrincipal components analysisen_US
dc.subjectProfile-to-profile variationen_US
dc.subjectSpline smoothingen_US
dc.titleMonitoring Nonlinear Profiles with Random Effects by Nonparametric Regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03610920802702535en_US
dc.identifier.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODSen_US
dc.citation.volume38en_US
dc.citation.issue10en_US
dc.citation.spage1664en_US
dc.citation.epage1679en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000269144700011-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000269144700011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.