標題: | 適用於眼睛偵測之眼鏡影像增強與反光分離 Glasses Image Enhancement and Reflection Separation for Eye Detection |
作者: | 何憲信 Hsien-Hsin Ho 張志永 Jyh-Yeong Chang 電控工程研究所 |
關鍵字: | 影像增強;反光分離;臉部偵測;MSRCR;Reflection Separation;image enhancement;face detection |
公開日期: | 2005 |
摘要: | 當人們在工作中或是在駕駛的環境中,打瞌睡常常是造成意外事故最常見的因素。而以眼睛的開閉狀態為基礎的瞌睡偵測系統,最重要的便是精確的眼睛偵測。在本篇論文中,我們提出從一張人臉影像中偵測出眼睛位置的演算法。在昏睡偵測或人臉辨識的系統中,當被偵測者有佩帶眼鏡或太陽眼鏡,除了太陽眼鏡本身色度會影響眼睛的偵測,也常常會因為有反光在眼鏡鏡片上產生,而使得偵測系統偵測失敗。所以如何消除太陽眼鏡帶來的干擾以及從這些鏡片上將反光正確地去除或分離是相當重要的問題。在此,我們使用影像增強的技術以及將鏡片上的反光去除或分離的方法,來改善這些情況的發生。如何將一張輸入的影像正確分離成反光與非反光兩個部分是非常困難的問題,因為缺乏有關所見影像的額外資訊的限制條件,分離的結果可能會有無數種組合發生。我們提供一種簡單的演算法來執行這種分離。給定一張有反光的影像當作輸入,演算法會將此輸入分解成兩張影像,而使得所分解出來的兩張影像,它們具有最少的角和邊緣的數量總和;這個方法在從有反光的單張影像上做出正確的分離,是相當有效的。圖片上有反光的眼鏡的區域也是類似上述的情況,所以我們將上述的原理應用在眼鏡的反光去除。 Drowsiness is often one of the most important factors causing accidents on various occasions such as work fields and vehicle driving. For drowsiness detection system based on the states of eyes, accurate eye detection is the most important. For a given face image, we present an algorithm to detect the eye location automatically. In drowsiness detection or face recognition systems, in addition to the effect caused by sunglasses, the detection also often fails from the reflections on the wearing glasses or sunglasses. Therefore, eliminating the interference caused by sunglasses, and removing or separating the reflections from the glasses are very important for drowsiness and face detections. In thesis, we utilize an image enhancement technique and an approach which can separate the reflections on the glasses to improve the problems above. How to decompose a single input image into reflection and non-reflection images correctly is very difficult because of the absence of additional knowledge or constraints about the scene being viewed. There will be an infinite number of valid decompositions. We describe an algorithm that uses a simple implementation to perform the decomposition. Given a single image with reflection as input, the algorithm searches for a decomposition into two images that minimize the total amount of edges and corners of the two images. The approach is effective to obtain quite correct separations on reflection scenes using only a single image. In a similar manner, we apply our method to the reflection removal on glasses. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009312569 http://hdl.handle.net/11536/78255 |
顯示於類別: | 畢業論文 |