完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳建豪en_US
dc.contributor.authorChien-Hao Chenen_US
dc.contributor.author王維菁en_US
dc.contributor.authorWeijing Wangen_US
dc.date.accessioned2014-12-12T02:54:17Z-
dc.date.available2014-12-12T02:54:17Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT008926801en_US
dc.identifier.urihttp://hdl.handle.net/11536/78613-
dc.description.abstract在本論文中,我們考慮兩個在生物醫學上常被應用的量:累積發生函數以及長期發生率;針對感興趣的發生原因,我們探討這兩個量的無母數估計。在三種不同的資料結構下(競爭風險和治癒模式在右設限存在下、競爭風險在左截切存在下),我們分別應用三種不同的想法去得到無母數估計量:分解法,加權法以及補值法。在本文中,我們證明出在每一種資料結構下,使用不用想法所得到的無母數估計量都是相同的。另外,我們也利用數值分析來比較在競爭風險和治癒模式下,何者的無母數估計量更為有效率。zh_TW
dc.description.abstractIn this thesis we consider nonparametric inference of the cumulative incidence function for a particular type of failure and its long-term incidence rate, both of which are useful descriptive measures for biomedical data with multiple endpoints. A unified framework is provided to study different inference techniques under various incomplete data structures. Specifically three approaches, namely decomposition, weighting and imputation, are studied under data settings which include the conventional competing risks data, the framework of a cure model and truncated data. Identity between these methods for each data structure is examined. Numerical examples are provided for comparing the first two data formulations.en_US
dc.language.isoen_USen_US
dc.subject競爭風險zh_TW
dc.subject治癒模式zh_TW
dc.subject補值法zh_TW
dc.subject加權法zh_TW
dc.subject多重狀態模式zh_TW
dc.subject無母數推論zh_TW
dc.subject充分追蹤zh_TW
dc.subject截切zh_TW
dc.subjectcompeting risksen_US
dc.subjectcure modelsen_US
dc.subjectimputationen_US
dc.subjectinverse probability weightingen_US
dc.subjectmulti-stat modelen_US
dc.subjectnonparametric inferenceen_US
dc.subjectsufficient follow-upen_US
dc.subjecttruncationen_US
dc.title三種不同資料結構下累積發生函數的無母數估計量研究zh_TW
dc.titleNonparametric Estimation of the Cumulative Incidence Function under Three Types of Data Structuresen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 680101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。