完整後設資料紀錄
DC 欄位語言
dc.contributor.author何錦泉en_US
dc.contributor.authorChin-Chuan Hoen_US
dc.contributor.author李素瑛en_US
dc.contributor.authorSuh-Yin Leeen_US
dc.date.accessioned2014-12-12T02:54:57Z-
dc.date.available2014-12-12T02:54:57Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009317507en_US
dc.identifier.urihttp://hdl.handle.net/11536/78719-
dc.description.abstract在資料串流環境中探勘有意義的樣式是一個重要的課題,在感測網路及股市分析等許多應用中都經常採用。由於資料串流環境的限制,探勘工作將會變得比較困難。我們在此篇論文的第一部份提出 New-Moment 演算法在資料串流環境中探勘封閉式頻繁項目集,New-Moment 使用位元向量以及精簡的 closed enumeration tree 大幅改進原來 Moment 演算法的效能。在第二部分我們提出 IncSPAM 演算法在串流環境中探勘循序樣式,它提供了一個全新的滑動視窗架構。IncSPAM 利用 SPAM 演算法以及記憶體索引的方法,動態維護目前最新的樣式。實驗顯示我們的方法能夠很有效率地在資料串流環境中探勘出有意義的樣式。zh_TW
dc.description.abstractMining a data stream is an important data mining problem with broad applications, such as sensor network, stock analysis. It is a difficult problem because of some limitations in the data stream environment. In the first part of this paper, we propose New-Moment to mine closed frequent itemsets. New-Moment uses bit-vectors and a compact lexicographical tree to improve the performance of Moment algorithm. In the second part, we propose IncSPAM to mine sequential patterns with a new sliding window model. IncSPAM is based on SPAM and utilizes memory indexing technique to incrementally maintain sequential patterns in current sliding window. Experiments show that our approaches are efficient for mining patterns in a data stream.en_US
dc.language.isoen_USen_US
dc.subject資料串流zh_TW
dc.subject滑動視窗zh_TW
dc.subject封閉式頻繁項目集zh_TW
dc.subject循序樣式zh_TW
dc.subjectdata streamen_US
dc.subjectsliding windowen_US
dc.subjectclosed frequent itemseten_US
dc.subjectsequential patternen_US
dc.title使用位元向量在資料串流環境探勘封閉式頻繁項目集及循序樣式之研究zh_TW
dc.titleMining of Closed Frequent Itemsets and Sequential Patterns in Data Streams Using Bit-Vector Based Methoden_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 750701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。