标题: | 多变量体积型态法用于磁振造影影像群组间结构差异性之定量分析 Multivariate Volumetric Morphometry for Characterizing Anatomical Discrepancy in MR Images of Different Groups |
作者: | 杨承嘉 Cheng-Chia Yang 陈永升 Yong-Sheng Chen 资讯科学与工程研究所 |
关键字: | 多变量体积形态法;以体素为基础的型态计量学;磁振造影;线性鉴别度分析;multivariate volumetric morphometry;voxel-based morphometry;MRI;linear discriminant analysis;MVM;VBM |
公开日期: | 2005 |
摘要: | 以体素为基础的型态计量学(voxel-based morphometry, VBM),近年来已被广泛应用在许多脑部结构研究上,以统计的方式量化、比较两组人脑结构每一体素之型态是否具有显着的差异。体素型态学使用单变异量统计,对于较为集中且巨大的差异具有简单有效的优点。但是由于此方法没有考虑相邻体素间的连带关系,因此可能无法找出差异量较为分散且微小的脑部区域。 本研究中我们提出了一个新的脑部结构评估技术—多变量体积形态法 (multivariate volumetric morphometry, MVM),以运用于磁振造影影像群组间结构差异性之定量分析。相对于以体素为基础的型态计量学,多变量体积形态法采用线性鉴别度分析(linear discriminant analysis, LDA)作为多变量的估计方法来取代单变量的分析。此方法能同时考虑全部的体素,以找出对于群组间结构差异性最具鉴别力的投影轴。位于该投影轴上之每一元素即代表相对应体素具有的鉴别力比重(discrimination weight),且此鉴别力比重可被视为用来评估磁振造影影像群组间结构差异之程度等级(significance level)。此种多变量的计量方法能突显群组间较为细微的结构性差异,很适合用于分析脑部结构差异的研究。此外,我们也证明了不论使用原始的磁振造影影像或是平滑化过后的影像,此方法所能达到的最大区辨能力是一样的,因此可以直接在原始影像而非在人工处理平滑化后的影像上推论分析结果。相反地,以体素为基础的型态计量学却必须使用平滑化的处理来增加分析的正确性,同时加强相邻体素间的连带关系。然而使用平滑化处理时,要决定其恰当的影响范围是很困难的一个问题,因为较大范围的平滑化处理虽然可降低影像杂讯,但却必须付出细部资讯被模糊的代价。 透过模拟小脑周围区域萎缩的实验,我们验证了多变量体积形态法的有效性与正确性。比起以体素为基础的型态计量学,该方法确实更有能力可侦测到群组间细微的脑部结构差异之处。应用在脊髓小脑运动失调症(spinocerebellar ataxia, SCA)的结构差异分析上,多变量体积形态法也比以体素为基础的型态计量学更明显地找出和病理相关的脑部结构组织。 Recently, voxel-based morphometry (VBM) has been widely applied to statistically infer the structural anomalies between the brains of two subject groups, in a voxel-by-voxel manner. This method is effective for mapping massive and centralized discrepancy. However, it may suffer from the poor sensitivity to subtle and widely-distributed discrepancy in brain structures. In this work, we propose a novel multivariate morphometry (MVM) method that can be used to delineate the anatomical discrepancy between two groups of MR images. Rather than voxel-by-voxel manner in VBM, the proposed MVM simultaneously considers all of the voxels in MR volumes and map the group differences by using the linear discriminant analysis to determine the most discriminant projection vector. Each element in the projection vector represents the discrimination weight of the corresponding voxel involved in the combination of the most discriminant components. This weight can thus be regarded as the significance level of the corresponding voxel when differentiating two groups of MR volumes. This multivariate approach is appropriate to characterize group discrepancy, particularly when the brain atrophy distributes widely. Moreover, we prove that the discriminability remains the same no matter the projection vector is calculated from the original MR volumes or from the smoothed ones. Hence we can simply use the original data without the interference of the blurring artifact caused by the smoothing operation. On the contrary, VBM method applies the Gaussian smoothing filter to reduce image noise as well as to incorporate spatial support from neighboring voxels. It is difficult to determine an appropriate kernel size for the smoothing filter because larger kernel can reduce more noise, but with the penalty of more smeared image. According to our experiments, we demonstrate the effectiveness of the proposed method by using the simulation data set containing artificial atrophy around the cerebellum area. Compared to the VBM method, the proposed MVM method can achieve a better sensitivity to subtle and widely-distributed variation of brain structure. When applied to a clinical study of SCA3 disease, the MVM method clearly reveals more significant atrophy in the disease-related areas within the brain volumes of the patient group, than the VBM method does. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009317529 http://hdl.handle.net/11536/78740 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.