完整後設資料紀錄
DC 欄位語言
dc.contributor.author曾孝捷en_US
dc.contributor.authorHsiao-Chieh Tsengen_US
dc.contributor.author賴明治en_US
dc.contributor.authorMing-Chih Laien_US
dc.date.accessioned2014-12-12T02:56:21Z-
dc.date.available2014-12-12T02:56:21Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009322502en_US
dc.identifier.urihttp://hdl.handle.net/11536/78991-
dc.description.abstract本論文介紹計算有不連續條件的二維Poisson方程的一個簡單快速的數值方法,並應用本方法來解Stokes方程和Navier-Stokes方程。在本文中,提供在計算區域上,處理介面的幾何形狀以及在介面上方程的不連續條件。我們使用三次雲線內插來近似不連續條件所在之介面,以及使用二階精度的外插公式來處理不連續條件。在效率的考量上,使用快速的Poisson算法。我們給出一些計算數據,來觀察此方法的精度以及應用。zh_TW
dc.description.abstractIn this paper, we introduce a simple and efficient second order numerical method to solve Poisson equation with jump conditions in two-dimension (2-D). We also apply the method to simulate Stokes and unsteady Navier-Stokes flow dynamics. One of the essential components of the method is to handle the geometric of the immersed interface and jump discontinuities along it in the computational domain. Cubic spline interpolation is implemented to deal with the interface and a second order accurate extrapolation is applied to incorporate these jump conditions. We also apply the marker-and-cell (MAC) method cooperating with the interface. In the matter of efficiency, we can apply some fast Poisson solvers such as Fishpack. We verify the accuracy, efficiency of our method by showing some numerical experiments.en_US
dc.language.isoen_USen_US
dc.subjectNavior-Stokes 方程zh_TW
dc.subjectStokes 方程zh_TW
dc.subject快速 Poisson 算法zh_TW
dc.subject內嵌介面zh_TW
dc.subject不連續條件zh_TW
dc.subjectNavior-Stokes Equationen_US
dc.subjectStokes Equationen_US
dc.subjectFast Poisson Solveren_US
dc.subjectImmersed Interfaceen_US
dc.subjectJump Discontinuityen_US
dc.title內嵌介面問題的數值方法與應用zh_TW
dc.titleNumerical Methods and Applications for Immersed Interface Problemsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 250201.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。