Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 李雅羚 | en_US |
dc.contributor.author | Ya-Ling Li | en_US |
dc.contributor.author | 賴明治 | en_US |
dc.contributor.author | Ming-Chih Lai | en_US |
dc.date.accessioned | 2014-12-12T02:56:22Z | - |
dc.date.available | 2014-12-12T02:56:22Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009322507 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/78996 | - |
dc.description.abstract | 這篇論文主要之目的是使用耦合微分的緊緻數值方法來解一階KDV方程。首先,我們先回顧一階和二階耦合微分的緊緻數值方法。接著,我們會學習一階和三階耦合微分的緊緻數值方法。再來,我們簡要地介紹Runge-Kutta Methods。最後,我們會給一些例子並且列出數值結果,然後做出結論。 | zh_TW |
dc.description.abstract | The primary objective of this thesis is to use coupled derivatives compact schemes (CD) for solving one-dimensional KDV equation. First, we review the coupled first and second derivatives scheme and then we study the coupled first and third derivatives scheme. Next, we introduce roughly the Runge-Kutta methods. Finally, we give some examples and show numerical results, and the conclusion follows. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 耦合微分 | zh_TW |
dc.subject | 緊緻數值方法 | zh_TW |
dc.subject | KDV方程 | zh_TW |
dc.subject | Coupled Derivatives | en_US |
dc.subject | Compact Schemes | en_US |
dc.subject | KdV Equation | en_US |
dc.title | 耦合微分的緊緻數值方法解一階KDV方程 | zh_TW |
dc.title | Coupled Derivatives Compact Schemes for One-Dimensional KdV Equation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.