完整後設資料紀錄
DC 欄位語言
dc.contributor.author李雅羚en_US
dc.contributor.authorYa-Ling Lien_US
dc.contributor.author賴明治en_US
dc.contributor.authorMing-Chih Laien_US
dc.date.accessioned2014-12-12T02:56:22Z-
dc.date.available2014-12-12T02:56:22Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009322507en_US
dc.identifier.urihttp://hdl.handle.net/11536/78996-
dc.description.abstract這篇論文主要之目的是使用耦合微分的緊緻數值方法來解一階KDV方程。首先,我們先回顧一階和二階耦合微分的緊緻數值方法。接著,我們會學習一階和三階耦合微分的緊緻數值方法。再來,我們簡要地介紹Runge-Kutta Methods。最後,我們會給一些例子並且列出數值結果,然後做出結論。zh_TW
dc.description.abstractThe primary objective of this thesis is to use coupled derivatives compact schemes (CD) for solving one-dimensional KDV equation. First, we review the coupled first and second derivatives scheme and then we study the coupled first and third derivatives scheme. Next, we introduce roughly the Runge-Kutta methods. Finally, we give some examples and show numerical results, and the conclusion follows.en_US
dc.language.isoen_USen_US
dc.subject耦合微分zh_TW
dc.subject緊緻數值方法zh_TW
dc.subjectKDV方程zh_TW
dc.subjectCoupled Derivativesen_US
dc.subjectCompact Schemesen_US
dc.subjectKdV Equationen_US
dc.title耦合微分的緊緻數值方法解一階KDV方程zh_TW
dc.titleCoupled Derivatives Compact Schemes for One-Dimensional KdV Equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 250701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。