標題: 耦合微分的緊緻數值方法解一階KDV方程
Coupled Derivatives Compact Schemes for One-Dimensional KdV Equation
作者: 李雅羚
Ya-Ling Li
賴明治
Ming-Chih Lai
應用數學系所
關鍵字: 耦合微分;緊緻數值方法;KDV方程;Coupled Derivatives;Compact Schemes;KdV Equation
公開日期: 2006
摘要: 這篇論文主要之目的是使用耦合微分的緊緻數值方法來解一階KDV方程。首先,我們先回顧一階和二階耦合微分的緊緻數值方法。接著,我們會學習一階和三階耦合微分的緊緻數值方法。再來,我們簡要地介紹Runge-Kutta Methods。最後,我們會給一些例子並且列出數值結果,然後做出結論。
The primary objective of this thesis is to use coupled derivatives compact schemes (CD) for solving one-dimensional KDV equation. First, we review the coupled first and second derivatives scheme and then we study the coupled first and third derivatives scheme. Next, we introduce roughly the Runge-Kutta methods. Finally, we give some examples and show numerical results, and the conclusion follows.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009322507
http://hdl.handle.net/11536/78996
顯示於類別:畢業論文


文件中的檔案:

  1. 250701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。