Full metadata record
DC FieldValueLanguage
dc.contributor.author黃園芳en_US
dc.contributor.author林松山en_US
dc.contributor.authorSong Sun Linen_US
dc.date.accessioned2014-12-12T02:56:23Z-
dc.date.available2014-12-12T02:56:23Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009322513en_US
dc.identifier.urihttp://hdl.handle.net/11536/79003-
dc.description.abstract在這篇論文中,我們考慮的是二維細胞類神經網路最簡單的模板即L型模版,這份工作曾在[Lin & Yang, 2001]研究過。他們是使用building block的方式討論空間熵。而本篇論文將利用花樣生成的方式重新考慮熵的問題。有關於〝花樣生成〞的工作可參考[Ban & Lin, 2005]。當我們無法精確估計出熵時,我們使用了Connecting Operator的方法估計熵的下界。有關於〝Connecting Operator〞的工作可參考[Ban, Lin & Lin, 2006]。最後,我們將與[Lin & Yang]的結果做比較。zh_TW
dc.description.abstractIn this paper, we consider the simplest two-dimensional CNN template, L-shaped template. This work had investigated on [Lin&Yang, 2001] before. They use the building block to discuss the spatial entropy. In this paper, we reappraise the spatial entropy by pattern generation method which could refer to [Ban&Lin, 2005]. When we could not evaluate the spatial entropy, we use connecting operator referred to [Ban, Lin&Lin, 2006] to evaluate the lower bounded of spatial entropy. Finally, we compare the result with [Lin&Yang].en_US
dc.language.isoen_USen_US
dc.subjectzh_TW
dc.subject花樣生成zh_TW
dc.subject細胞類神經網路zh_TW
dc.subject模板zh_TW
dc.subjectentropyen_US
dc.subjectpattern generationen_US
dc.subjectcellular neural networken_US
dc.subjecttemplateen_US
dc.title二維細胞類神經網路之L型模版zh_TW
dc.titleTwo-Dimensional CNN with L-shaped Templateen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 251301.pdf
  2. 251302.pdf
  3. 251303.pdf
  4. 251304.pdf
  5. 251305.pdf
  6. 251306.pdf
  7. 251307.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.