完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳宏榮 | en_US |
dc.contributor.author | Hung-Jung Chen | en_US |
dc.contributor.author | 邵錦昌 | en_US |
dc.contributor.author | Jiin-Chang Shaw | en_US |
dc.date.accessioned | 2014-12-12T02:56:23Z | - |
dc.date.available | 2014-12-12T02:56:23Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009322517 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/79007 | - |
dc.description.abstract | 在這篇論文裡透過使用q-deformed的pseudodifferential 算子我們研究Darboux -Backlund轉換(DBTs)應用在 q-deformed Korteweg–de Vries 階層系統。 算子T 是由滿足特定線性系統的波函數所構成,有了這個T可以帶動DBTs的轉換。為了從舊的解去得到新的解 ,我們必須選擇一定特定的算子。反覆疊帶DBTs的轉換,我們獲得one soliton和two solitons的解。另外利用假設q趨近於一(這時q-KdV會回到原本的KdV)和ε等於q減一的假設我們也算出ε對於q-KdV階層系統一孤立子和二孤立子解的修正 。 | zh_TW |
dc.description.abstract | In this thesis we study Darboux -Backlund transformations (DBTs) for the q-deformed Korteweg -de Vries hierarchy by using the q-deformed pseudodifferential operators. The elementary DBTs are triggered by the gauge operators T constructed from the wave functions of the associated linear systems. In order to obtain the new solution from the old one , we have to choose certain gauge operator. Iterating these elementary DBTs, we obtain one and two solitons solutions. In addition we also figure out the ? correction of one and two solitons for the KdV hierarchy by letting ε equal to q − 1 and q approach 1(which will recovers q-KdV to the ordinary KdV). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 孤立子 | zh_TW |
dc.subject | 轉換 | zh_TW |
dc.subject | 達布 | zh_TW |
dc.subject | q-KdV | en_US |
dc.subject | Darboux | en_US |
dc.subject | Lax | en_US |
dc.subject | Wronskian | en_US |
dc.title | ε 對於q-KdV階層系統一孤立子和二孤立子解的修正 | zh_TW |
dc.title | The ε correction of one and two solitons solutions for the KdV hierarchy | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |