完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳宏榮en_US
dc.contributor.authorHung-Jung Chenen_US
dc.contributor.author邵錦昌en_US
dc.contributor.authorJiin-Chang Shawen_US
dc.date.accessioned2014-12-12T02:56:23Z-
dc.date.available2014-12-12T02:56:23Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009322517en_US
dc.identifier.urihttp://hdl.handle.net/11536/79007-
dc.description.abstract在這篇論文裡透過使用q-deformed的pseudodifferential 算子我們研究Darboux -Backlund轉換(DBTs)應用在 q-deformed Korteweg–de Vries 階層系統。 算子T 是由滿足特定線性系統的波函數所構成,有了這個T可以帶動DBTs的轉換。為了從舊的解去得到新的解 ,我們必須選擇一定特定的算子。反覆疊帶DBTs的轉換,我們獲得one soliton和two solitons的解。另外利用假設q趨近於一(這時q-KdV會回到原本的KdV)和ε等於q減一的假設我們也算出ε對於q-KdV階層系統一孤立子和二孤立子解的修正 。zh_TW
dc.description.abstractIn this thesis we study Darboux -Backlund transformations (DBTs) for the q-deformed Korteweg -de Vries hierarchy by using the q-deformed pseudodifferential operators. The elementary DBTs are triggered by the gauge operators T constructed from the wave functions of the associated linear systems. In order to obtain the new solution from the old one , we have to choose certain gauge operator. Iterating these elementary DBTs, we obtain one and two solitons solutions. In addition we also figure out the ? correction of one and two solitons for the KdV hierarchy by letting ε equal to q − 1 and q approach 1(which will recovers q-KdV to the ordinary KdV).en_US
dc.language.isoen_USen_US
dc.subject孤立子zh_TW
dc.subject轉換zh_TW
dc.subject達布zh_TW
dc.subjectq-KdVen_US
dc.subjectDarbouxen_US
dc.subjectLaxen_US
dc.subjectWronskianen_US
dc.titleε 對於q-KdV階層系統一孤立子和二孤立子解的修正zh_TW
dc.titleThe ε correction of one and two solitons solutions for the KdV hierarchyen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。