Full metadata record
DC FieldValueLanguage
dc.contributor.author江柏頡en_US
dc.contributor.authorBo Jia Jiangen_US
dc.contributor.author莊仁輝en_US
dc.contributor.authorJen-Hui Chuangen_US
dc.date.accessioned2014-12-12T02:56:43Z-
dc.date.available2014-12-12T02:56:43Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009323568en_US
dc.identifier.urihttp://hdl.handle.net/11536/79096-
dc.description.abstract在無照明的環境下,紅外線影像可以捕捉物體本身主動散發的輻射熱,其有別於一般可見光影像的特性,能夠發展出不同於可見光影像分析的應用。例如使用紅外線熱影像在黑暗環境中做安全監控時,其影像分析功能之一是進行人臉追蹤的即時處理,在本論文中,是所要探討的課題。我們首先實作影像子空間模型的方法,而不同於一般追蹤所使用的模型,如利用機率或類神經的模型來做人臉追蹤。我們再將一些可能改進的方法加入到影像子空間模型中。我們所加入方法包含運動速度的預測、目標物形狀估算的改進,以及設定臨界值來判定新的影像是否該用於系統更新。實驗結果顯示,這些方法的加入可以使得人臉追蹤達到更精確的效果。zh_TW
dc.description.abstractIn the dark environment, infrared imaging offers a promising alternative to visible light image in various applications owing to its capability of sensing object heat emissions. For example, we can use infrared image to track human face for security surveillances in the dark in real time. In this thesis, we first implement the presented method in [17]. that uses an image subspace model. It is different from general tracking models, such as probabilistic or neural network model. In this paper, some adjustments are incorporated into the proposed method, including target motion prediction, bounding box refinement, and outlier detection. Experimental results show that the above approach can indeed improve tracking accuracy.en_US
dc.language.isozh_TWen_US
dc.subject紅外線zh_TW
dc.subject安全監控zh_TW
dc.subject影像子空間zh_TW
dc.subject人臉追蹤zh_TW
dc.subjecttrackingen_US
dc.subjectinfrared imageen_US
dc.subjectsurveillanceen_US
dc.title利用紅外線影像之人臉追蹤zh_TW
dc.titleFace Tracking Using Infrared Imagesen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 356801.pdf
  2. 356802.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.