標題: 三正則及連通圖中漢米爾頓性質之連線需求數目的研究
The Edge-Required-Hamiltonicity of the Cubic 3-Connected Hamiltonian Graphs
作者: 吳宙耕
Chou-Keng Wu
譚建民
Jimmy J.M. Tan
資訊科學與工程研究所
關鍵字: 漢米爾頓;漢米爾頓連結;hamiltonian;hamiltonian connected
公開日期: 2005
摘要: 給一個圖G=(V,E)以及邊集合R屬於E,其中R的邊為獨立路徑。如果一個圖G包含漢米爾頓迴路以及含有任何的需求邊R且|R|小於等於k,則圖G稱為k-漢米爾頓需求邊。我們定義圖G的漢米爾頓需求邊且k為最大時,稱為hr(G)。如果一個圖G-F包含漢米爾頓但不包含壞邊F且|F|小於等於k,則圖G稱為k-漢米爾頓容錯邊。我們定義圖G的漢米爾頓容錯邊且k為最大時,稱為hf(G)。在這篇論文中,我們要證明如果圖G為三正則漢米爾頓圖,則hf(G)小於等於1。如果圖G為三正則漢米爾頓圖且hf(G)=1,則hr(G)大於等於1且hr(G)小於等於3。我們將介紹一些hf(G)=1且hr(G)=i其中i=1,2,3的3-連通漢米爾圖G,以及一些hf(G)=0且hr(G)=1的3-連通漢米爾圖G。
Given a graph G = (V,E) and edge set R belong E, where the edges of R form independent paths. A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle including any R whenever |R| <= k. We define edge-required hamiltonicity of G, denoted by hr(G), to be the maximum of such k. A graph G is k-edge-fault-tolerant-hamiltonian if G–F is hamiltonian for any faulty edge set F with |F| <= k. We define edge-fault-tolerant hamiltonicity of G, denoted by hf(G), to be the maximum of such k. In this thesis, we prove that hf(G) <= 1 if G is a cubic hamiltonian graph, 1 <= hr(G) <= 3 if G is a cubic hamiltonian graph with hf (G) = 1. We present some cubic 3-connected hamiltonian graphs G with hf(G) = 1 and hr(G) = i for i = 1, 2, 3, a cubic 3-connected hamiltonian graph G with hf(G) = 0 and hr(G) = 0, and a cubic 3-connected hamiltonian graph G with hf(G) = 0 and hr(G) = 1.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009323614
http://hdl.handle.net/11536/79145
顯示於類別:畢業論文


文件中的檔案:

  1. 361401.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。