Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Ho, Tung-Yang | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:10:24Z | - |
dc.date.available | 2014-12-08T15:10:24Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.issn | 0020-7160 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7939 | - |
dc.identifier.uri | http://dx.doi.org/10.1080/00207160701684485 | en_US |
dc.description.abstract | Some research on the folded Petersen cube networks have been published for the past several years due to its favourite properties. In this paper, we consider the fault-tolerant hamiltonicity and the fault-tolerant hamiltonian connectivity of the folded Petersen cube networks. We use FPQn, k to denote the folded Petersen cube networks of parameters n and k. In this paper, we show that FPQn, k-F remains hamiltonian for any F V(FPQn, k)E(FPQn, k) with |F|n+3k-2 and FPQn, k-F remains hamiltonian connected for any F V(FPQn, k)E(FPQn, k) with |F|n+3k-3 if (n, k){(0, 1)}{(n, 0) | n is a positive integer}. Moreover, this result is optimal. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hamiltonian | en_US |
dc.subject | hamiltonian connected | en_US |
dc.subject | folded Petersen cube networks | en_US |
dc.title | Fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity of the folded Petersen cube networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00207160701684485 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS | en_US |
dc.citation.volume | 86 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 57 | en_US |
dc.citation.epage | 66 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000260771800004 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.