标题: | 利用类神经方法建构晶圆缺陷点群聚图案之辨识系统 The Identification System of Wafer Defects Clustering Patterns Constructed by Artificial Neural Network |
作者: | 张乔凯 Chaio-Kai Chang 唐丽英 张永佳 Lee-Ing Tong Yung-Chia Chang 工业工程与管理学系 |
关键字: | 晶圆;良率;缺陷点;群聚现象;类神经网路;自组性演算法;Wafer;Yield;Defect;Clustering Phenomenon;Artificial Neural Network;Group Method of Data Handling |
公开日期: | 2005 |
摘要: | 如何提升晶圆的良率(yield)一直是半导体厂最关注的问题之一。而良率问题往往和晶圆上缺陷点数和缺陷点群聚现象息息相关,其中缺陷点群聚现象的产生主要是由于晶圆尺寸越作越大,制程越来越复杂而造成缺陷点出现群聚现象。因为制程问题的不同,群聚图案就会有不同的形状,因此制程工程师若能准确地判断出晶圆上的群聚图案,即可以迅速找到制程的问题来提升良率。目前有一些中外文献利用类神经方法辨识晶圆缺陷点之群聚图案,效果不错,但这些文献所提之方法在类神经的输入变数撷取上往往需要花费很多时间。因此本研究的主要目的是利用类神经方法建构出一套简单好用且辨识率高的晶圆缺陷点图案判别系统,能够简单撷取类神经输入变数以及有效辨识缺陷点群聚图案。本研究将以模拟资料进行类神经网路方法的训练,以找到表现最佳的类神经网路方法及其参数组合,最后再以新竹科学园区某半导体厂商之实际晶圆资料来验证本研究之辨识系统的有效性及可行性。 Being a semiconductor manufacturer, knowing how to improve the yield of wafer production has been regarded as the focus. However the causes of yield problems have much to do with the total number of defects on a wafer and defects clustering phenomenon. As the wafer size increases, the wafer processes get complicated and the defects clustering phenomenon tends to be apparent. Different problems of wafer processes always make different clustering patterns, so process engineers could find the process problems rapidly to improve the yield by identifying the clustering patterns correctly. Some papers make use of Artificial Neural Network (ANN) to identify wafer defects clustering patterns and come to the acceptable effects. However, it costs much time while transferring wafer defects data into input variables of ANN. This study constructs a wafer defects identification system by ANN, which characterize well identification rate and the method for easily getting input variables of ANN. Simulation data is used for training ANN and then to find out the combination of parameters of the best performance. The Real wafer defects data verify the effectiveness and feasibility of the identification system. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009333528 http://hdl.handle.net/11536/79489 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.