完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, S. H.en_US
dc.contributor.authorWang, R. S.en_US
dc.date.accessioned2014-12-08T15:10:26Z-
dc.date.available2014-12-08T15:10:26Z-
dc.date.issued2009en_US
dc.identifier.issn0266-4763en_US
dc.identifier.urihttp://hdl.handle.net/11536/7967-
dc.identifier.urihttp://dx.doi.org/10.1080/02664760802474231en_US
dc.description.abstractIn this paper, the hypothesis testing and confidence region construction for a linear combination of mean vectors for K independent multivariate normal populations are considered. A new generalized pivotal quantity and a new generalized test variable are derived based on the concepts of generalized p-values and generalized confidence regions. When only two populations are considered, our results are equivalent to those proposed by Gamage et al. [Generalized p-values and confidence regions for the multivariate Behrens-Fisher problem and MANOVA, J. Multivariate Aanal. 88 (2004), pp. 117-189] in the bivariate case, which is also known as the bivariate Behrens-Fisher problem. However, in some higher dimension cases, these two results are quite different. The generalized confidence region is illustrated with two numerical examples and the merits of the proposed method are numerically compared with those of the existing methods with respect to their expected areas, coverage probabilities under different scenarios.en_US
dc.language.isoen_USen_US
dc.subjectcoverage probabilityen_US
dc.subjectgeneralized confidence regionen_US
dc.subjectgeneralized pivotal quantityen_US
dc.subjectgeneralized test variableen_US
dc.subjectheteroscedasticityen_US
dc.subjecttype I erroren_US
dc.titleInferences on a linear combination of K multivariate normal mean vectorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/02664760802474231en_US
dc.identifier.journalJOURNAL OF APPLIED STATISTICSen_US
dc.citation.volume36en_US
dc.citation.issue4en_US
dc.citation.spage415en_US
dc.citation.epage428en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000265334000005-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000265334000005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。