標題: 考慮流動性下之選擇權訂價模型: 非線性拋物線偏微分方程式的數值方法應用
Pricing options under illiquidity: Numerical method applications in nonlinear parabolic PDE
作者: 楊家農
Chia-Nung Yang
鍾惠民
Huimin Chung
財務金融研究所
關鍵字: 選擇權評價;非流動性的選擇權定價;非線性偏微分方程式;回饋效果;價格影響力;有限差分法;湯馬斯演算法;非線性最小平方法;Option Valuation;Illiquidity Option Pricing;Nonlinear PDE;Feedback Effect;Price Impact;Finite Difference Method;Thomas Algorithm;NLS
公開日期: 2005
摘要: 本篇論文提出一個在市場流動性不足情況發生時的選擇權訂價模型,並且發展一個新的數值方法來求解一個非線性拋物線型態的偏微分方程式,同時利用湯馬斯演算法來提升數值運算的效率。在實證研究的部份,我們使用美國的個股選擇權資料來進行分析,首先運用非線性最小平方法來估計標的物的市場流動性,並針對Black-Scholes與本文所運用的模型即Frey模型兩者之間對選擇權定價的損失函數分析。
This paper considers the pricing model of options under illiquidity. A new numerical procedure for solving the nonlinear parabolic partial differential equation is explored and the Thomas algorithm is used to improving the efficiency of the numerical scheme. Using CBOE stock options, we employ the nonlinear least square method for obtaining the liquidity parameter of the underlying stock option in empirical work and then comparing the loss function between the Black-Scholes model and the model which is proposed by Frey and Patie (2001) and will be abbreviated as the Frey model in this paper.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009339523
http://hdl.handle.net/11536/79726
Appears in Collections:Thesis


Files in This Item:

  1. 952301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.