標題: | 風險值衡量:變幅DCC模型的應用 Measuring the Value-at-Risk : An Application of Range-DCC Model |
作者: | 洪慎慈 Shen-Tzu Hung 周雨田 鍾惠民 Dr. Yeutien Chou Dr. Huimin Chung 財務金融研究所 |
關鍵字: | 風險值;極值理論;變幅;CARR;波動性;DCC;Value-at-Risk;extreme value theory;range;CARR;volatility;DCC |
公開日期: | 2005 |
摘要: | 本研究針對不同財務資料特性所提出之風險值模型進行評比,包括考慮厚尾性質的極值理論(extreme value theory;簡稱EVT)風險值模型,以及利用「時變」波動模型捕捉報酬具有條件異質變異特性的動態風險值模型。此外,將變幅(range)概念引入風險值估計中,利用Chou (2005)提出之CARR(Conditional Autoregressive Range)模型估計波動性,得到變幅基礎下的風險值模型,並以美國S&P 500股價指數與十年期財政部政府公債日資料做為研究對象,進行變幅與報酬基礎下的風險值模型在風險值預測能力之比較,實證結果顯示,變幅基礎下的風險值模型表現優於報酬基礎下的風險值模型。
最後,更將分析維度擴大至投資組合風險值的估計,探討不同相關係數估計模型對投資組合風險值估計的影響,結果顯示Chou, Liu和Wu (2005)提出之變幅基礎下的DCC(Dynamic Conditional Correlation)模型表現優於報酬基礎下的DCC模型,可獲得較準確的投資組合風險估計值,證實變幅可做為資產報酬風險評估之一良好指標。 This paper investigates the Value-at-Risk models that were proposed with different characteristics of financial data, including the extreme value theory (EVT) Value-at-Risk model and the dynamic models considering the heteroscedasticity problem. In addition, we adopt the concept of range to the Value-at-Risk estimation. We use the Conditional Autoregressive Range (CARR) model of Chou (2005) to measure the volatility, and get the range-based Value-at-Risk model. We use the daily data of the stock indices of S&P 500 and the 10-year Treasury bond yield for empirical analysis. The empirical results indicate that the range-based models have the better performance than the return-based models in the Value-at-Risk evaluation. Finally, we expand the evaluation to larger dimentions for the portfolio situation, and examine the effect of different correlation estimating models on the Value-at-Risk measuring of a portfolio. We find that the range-based Dynamic Conditional Correlation (DCC) model gets more precise Value-at-Risk estimation than the return-based DCC model. In orter words, range data is a good tool for risk measuring of the asset return. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009339530 http://hdl.handle.net/11536/79732 |
顯示於類別: | 畢業論文 |