Full metadata record
DC FieldValueLanguage
dc.contributor.author洪慎慈en_US
dc.contributor.authorShen-Tzu Hungen_US
dc.contributor.author周雨田en_US
dc.contributor.author鍾惠民en_US
dc.contributor.authorDr. Yeutien Chouen_US
dc.contributor.authorDr. Huimin Chungen_US
dc.date.accessioned2014-12-12T02:59:20Z-
dc.date.available2014-12-12T02:59:20Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009339530en_US
dc.identifier.urihttp://hdl.handle.net/11536/79732-
dc.description.abstract本研究針對不同財務資料特性所提出之風險值模型進行評比,包括考慮厚尾性質的極值理論(extreme value theory;簡稱EVT)風險值模型,以及利用「時變」波動模型捕捉報酬具有條件異質變異特性的動態風險值模型。此外,將變幅(range)概念引入風險值估計中,利用Chou (2005)提出之CARR(Conditional Autoregressive Range)模型估計波動性,得到變幅基礎下的風險值模型,並以美國S&P 500股價指數與十年期財政部政府公債日資料做為研究對象,進行變幅與報酬基礎下的風險值模型在風險值預測能力之比較,實證結果顯示,變幅基礎下的風險值模型表現優於報酬基礎下的風險值模型。 最後,更將分析維度擴大至投資組合風險值的估計,探討不同相關係數估計模型對投資組合風險值估計的影響,結果顯示Chou, Liu和Wu (2005)提出之變幅基礎下的DCC(Dynamic Conditional Correlation)模型表現優於報酬基礎下的DCC模型,可獲得較準確的投資組合風險估計值,證實變幅可做為資產報酬風險評估之一良好指標。zh_TW
dc.description.abstractThis paper investigates the Value-at-Risk models that were proposed with different characteristics of financial data, including the extreme value theory (EVT) Value-at-Risk model and the dynamic models considering the heteroscedasticity problem. In addition, we adopt the concept of range to the Value-at-Risk estimation. We use the Conditional Autoregressive Range (CARR) model of Chou (2005) to measure the volatility, and get the range-based Value-at-Risk model. We use the daily data of the stock indices of S&P 500 and the 10-year Treasury bond yield for empirical analysis. The empirical results indicate that the range-based models have the better performance than the return-based models in the Value-at-Risk evaluation. Finally, we expand the evaluation to larger dimentions for the portfolio situation, and examine the effect of different correlation estimating models on the Value-at-Risk measuring of a portfolio. We find that the range-based Dynamic Conditional Correlation (DCC) model gets more precise Value-at-Risk estimation than the return-based DCC model. In orter words, range data is a good tool for risk measuring of the asset return.en_US
dc.language.isozh_TWen_US
dc.subject風險值zh_TW
dc.subject極值理論zh_TW
dc.subject變幅zh_TW
dc.subjectCARRzh_TW
dc.subject波動性zh_TW
dc.subjectDCCzh_TW
dc.subjectValue-at-Risken_US
dc.subjectextreme value theoryen_US
dc.subjectrangeen_US
dc.subjectCARRen_US
dc.subjectvolatilityen_US
dc.subjectDCCen_US
dc.title風險值衡量:變幅DCC模型的應用zh_TW
dc.titleMeasuring the Value-at-Risk : An Application of Range-DCC Modelen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 953001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.