Title: | 適用於多輸入多輸出系統之低複雜度K-Best 球體解碼演算法 Low-complexity Techniques of K-Best Sphere Decoding for MIMO systems |
Authors: | 張修齊 Hsiu-Chi Chang 張錫嘉 Hsie-Chia Chang 電子研究所 |
Keywords: | 多輸入多輸出系統;球體解碼演算法;低複雜度 K個最好的;MIMO;Sphere Decoding algorithm;Low-complexity K-Best sphere decoding algorithm |
Issue Date: | 2007 |
Abstract: | 這篇論文中,我們在維持和傳統K-Best球體解碼演算法及最大概似偵側(ML detection)相近的效能的前提下提出了兩個化簡K-Best 球體解碼演算法的方法。其中可變動式K-Best 球體解碼演算法提供利用接收訊號來決定K值大小的方式。 而分群式K-Best球體解碼演算法利用接收訊號的統計特性僅僅需要粗略排序的比較器就可以替換運算複雜的排序電路。藉由 4x4 64-QAM的系統模擬,位元錯誤率(BER)訂在5x10-4 的條件下與傳統的64-Best 球體解碼演算法做比較,使用可變動式K-Best 球體解碼演算法可以化簡23.65% 到 52.22% 的計算複雜度,並且僅造成 0.13dB到1.18dB的效能衰減。使用分群式K-Best球體解碼演算法可以化簡計算複雜度超過99%,並且僅造成0.09dB的效能衰減。 In the thesis, two low-complexity techniques of K-best SD algorithm are proposed while remain similar performance to conventional K-best SD algorithm and ML detection. Adaptive K-Best SD algorithm provides a means to determine the value K according to the received signals. Clustered K-Best SD algorithm uses the statistics knowledge of the received signal, and the clustering technique replaces the high complexity of the sorter with a few comparators. As compared with conventional 64-Best SD algorithm for 4x4 64 -QAM system, the adaptive K-Best SD algorithm can reduce complexity ranges from 23.65% to 52.22% within 0.13dB and 1.18dB performance degradation, whereas the clustered K-Best SD algorithm can reduce over 99% complexity within 0.09dB performance degradation. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009411691 http://hdl.handle.net/11536/80605 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.