Full metadata record
DC FieldValueLanguage
dc.contributor.authorKueng, Tz-Liangen_US
dc.contributor.authorLiang, Tyneen_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:10:33Z-
dc.date.available2014-12-08T15:10:33Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn0895-7177en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mcm.2008.08.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/8074-
dc.description.abstractEffective utilization of communication resources is crucial for improving performance in multiprocessor/communication systems. In this paper, the mutually independent hamiltonicity is addressed for its effective utilization of resources on the binary wrapped butterfly graph. Let G be a graph with N vertices. A hamiltonian cycle C of G is represented by < u(1),u(2),...,u(N),u(1)> to emphasize the order of vertices on C. Two hamiltonian cycles of G, namely C(1) = < u(1),u(2),...,u(N),u(1)> and C(2) = < v(1),v(2),...,v(N),v(1)>, are said to be independent if u(1) = v(1) and u(i) not equal v(i) for all 2 <= i <= N. A collection of m hamiltonian cycles C(1),...,C(m), starting from the same vertex, are m-mutually independent if any two different hamiltonian cycles are independent. The mutually independent hamiltonicity of a graph G, denoted by IHC(G), is defined to be the maximum integer m such that, for each vertex u of G, there exists a set of m-mutually independent hamiltonian cycles starting from u. Let BF(n) denote the n-dimensional binary wrapped butterfly graph. Then we prove that IHC(BF(n)) = 4 for all n >= 3. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectInterconnection networken_US
dc.subjectGraphen_US
dc.subjectButterfly graphen_US
dc.subjectHamiltonian cycleen_US
dc.titleMutually independent hamiltonian cycles of binary wrapped butterfly graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2008.08.014en_US
dc.identifier.journalMATHEMATICAL AND COMPUTER MODELLINGen_US
dc.citation.volume48en_US
dc.citation.issue11-12en_US
dc.citation.spage1814en_US
dc.citation.epage1825en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000260757700017-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000260757700017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.