Full metadata record
DC FieldValueLanguage
dc.contributor.author張文賢en_US
dc.contributor.author林心宇en_US
dc.date.accessioned2014-12-12T03:04:05Z-
dc.date.available2014-12-12T03:04:05Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009012537en_US
dc.identifier.urihttp://hdl.handle.net/11536/80836-
dc.description.abstract資料探勘是一種分析的程序,用來幫助我們發現大型資料庫中的特徵及知識。因為有關生物學的資料探勘快速的發展,2001年資料探勘競賽聚焦在基因及藥物設計資料上。我們所熱衷的是一個分類問題,這個問題有三個有趣的特性(1)大量的遺漏值(2)大量的屬性(3)混合兩種不同型態的資料,而我們最感興趣的分類方法就是決策樹分類法,我們修改了決策樹演算法,並引入“少數服從多數”技巧來提昇分類正確性。為了結合上述兩種分類方法我們發展出“主要-輔助”分類系統。zh_TW
dc.description.abstractData mining is an analysis process which helps discovering patterns and knowledge in large databases. Because of the rapid growth of interest in mining biological databases, KDD Cup 2001 was focused on data from genomics and drug design. We were involved in a classification problem. The problem has three interesting features: (1) the dataset contains many missing values; (2) this dataset has a lot of attributes; and (3) the dataset is a mixture of two types of data, while the classification method we interested in most is Decision Tree. We modify the Decision Tree algorithm and cite the majority vote to improve the classification accuracy. For integrating the above two classification methods we develop " Primary-Secondary " classification system.en_US
dc.language.isoen_USen_US
dc.subject資料探勘競賽zh_TW
dc.subject決策樹zh_TW
dc.subject少數服從多數zh_TW
dc.subject"主要-輔助”分類系統zh_TW
dc.subjectKDD Cupen_US
dc.subjectDecision Treeen_US
dc.subjectMajority voteen_US
dc.subject"Primary-Secondary " classification systemen_US
dc.title2001年資料探勘競賽研究zh_TW
dc.titleStudy on KDD cup 2001en_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 253701.pdf
  2. 253702.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.