標題: 嵌入式語音偵測與關鍵詞辨識系統
Voice Activity Detection and Keyword Spotting System on Embedded Platform
作者: 鄧存智
Cun-Zhi Deng
陳信宏
Sin-Horng Chen
電信工程研究所
關鍵字: 語音偵測;語音辨識;VAD;speech recognition
公開日期: 2007
摘要: 在本論文中,我們將Isolated word辨識與Keyword spotting分別實現於嵌入式平台環境。在Isolated word辨識中,系統目標為建立辨識詞庫一千詞彙的Embedded Automatic Speech Recognition (eASR)系統。在辨識速度上小於兩倍語音輸入時間,以及辨識率在乾淨環境中超過95%,而在車環境下超過90%,為了加速辨識以及使用上的便利性,我們加入語音偵測技術,然而在嵌入式系統中,為了解決電容式麥克風在充電時輸出的不可靠,我們並非以開始為語音訂定臨界值(threshold),而是採用適應性臨界值。在Keyword spotting中,我們使用與關鍵詞聲學模型一樣的填充模型,並考慮以關鍵詞長挑選最佳路徑,其辨識率在乾淨環境中超過90%。
In this thesis, an embedded isolated Mandarin word recognition system and keyword spotting were implemented in a Windows-CE based mobile device. The speech recognition system used a HMM recognizer using partition Lapalacian observation probability. The system was carefully tuning in order to get the near real-time response without performance degeneration. Finally, the isolated Mandarin word recognition system, the system response time is about 1.2 times real time and 95.8% word recognition rate can be achieved for a 1000 words application, in the other hand, keyword spotting response time is 1.8 real time and 91.6% recognition rate for a 776 words.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009413622
http://hdl.handle.net/11536/80883
Appears in Collections:Thesis