Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorYang, Cheng-Hsiungen_US
dc.date.accessioned2014-12-08T15:10:36Z-
dc.date.available2014-12-08T15:10:36Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn1054-1500en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.3049320en_US
dc.identifier.urihttp://hdl.handle.net/11536/8102-
dc.description.abstractWe study the synchronization of general chaotic systems which satisfy the Lipschitz condition only, with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. The uncertain parameters of a system vary with time due to aging, environment, and disturbances. A sufficient condition is given for the asymptotical stability of common zero solution of error dynamics and parameter update dynamics by the Ge-Yu-Chen pragmatical asymptotical stability theorem based on equal probability assumption. Numerical results are studied for a Lorenz system and a quantum cellular neural network oscillator to show the effectiveness of the proposed synchronization strategy.en_US
dc.language.isoen_USen_US
dc.subjectchaosen_US
dc.subjectsynchronisationen_US
dc.titleSynchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive trackingen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.3049320en_US
dc.identifier.journalCHAOSen_US
dc.citation.volume18en_US
dc.citation.issue4en_US
dc.citation.epageen_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000262224600039-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000262224600039.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.