Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ge, Zheng-Ming | en_US |
dc.contributor.author | Yang, Cheng-Hsiung | en_US |
dc.date.accessioned | 2014-12-08T15:10:36Z | - |
dc.date.available | 2014-12-08T15:10:36Z | - |
dc.date.issued | 2008-12-01 | en_US |
dc.identifier.issn | 1054-1500 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1063/1.3049320 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/8102 | - |
dc.description.abstract | We study the synchronization of general chaotic systems which satisfy the Lipschitz condition only, with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. The uncertain parameters of a system vary with time due to aging, environment, and disturbances. A sufficient condition is given for the asymptotical stability of common zero solution of error dynamics and parameter update dynamics by the Ge-Yu-Chen pragmatical asymptotical stability theorem based on equal probability assumption. Numerical results are studied for a Lorenz system and a quantum cellular neural network oscillator to show the effectiveness of the proposed synchronization strategy. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | chaos | en_US |
dc.subject | synchronisation | en_US |
dc.title | Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1063/1.3049320 | en_US |
dc.identifier.journal | CHAOS | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.epage | en_US | |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
dc.identifier.wosnumber | WOS:000262224600039 | - |
dc.citation.woscount | 5 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.