完整後設資料紀錄
DC 欄位語言
dc.contributor.author王素梅en_US
dc.contributor.author黃冠華en_US
dc.date.accessioned2014-12-12T03:07:18Z-
dc.date.available2014-12-12T03:07:18Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009426517en_US
dc.identifier.urihttp://hdl.handle.net/11536/81456-
dc.description.abstract本研究的主要目的是藉由群聚分析的方法對潛在群體模型做參數估計。我們引用了群聚方法中的k 均值分群和階層式分群的想法,將原本的距離測度改成相關係數或共變異數,然後對所有的主體分群,使得屬於在同一群的主體所測得的各項目能互相獨立。將估計出的潛在群體視為已知變數後,再去估計潛在群體迴歸分析模型的參數就變得容易多了。我們的模擬結果顯示出:所用的測度為相關係數或共變異數的k 均值分群法表現得不錯,但是所用的測度為共變異數的階層式分群法表現得並不好。zh_TW
dc.description.abstractThe aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”. By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the covariance measurement didn’t perform well.en_US
dc.language.isoen_USen_US
dc.subject潛在群體迴歸zh_TW
dc.subjectk均值分群zh_TW
dc.subject階層式分群zh_TW
dc.subjectRegression of latent class analysis ( RLCA)en_US
dc.subjectk-meansen_US
dc.subjecthierarchicalen_US
dc.title藉由K 均值分群與階層式分群程序對潛在群體分析做參數估計zh_TW
dc.titleParameter Estimation for Latent Class Models via K-means and Hierarchical Proceduresen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 651701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。