标题: | 应用分类元-类神经网路模型于台湾加权指数趋势预测之研究 Applying a XCS-Neural-network Based Trading Model on Taiwan Stock Index Trend Forecasting |
作者: | 阮榆方 陈安斌 资讯管理研究所 |
关键字: | 分类元-类神经网路股票交易系统;延伸分类元系统;倒传递类神经网路;台湾加权指數;extended classifier system;backpropagation neural network;XCS-Neural-network Based Trading System |
公开日期: | 2006 |
摘要: | 传统经济学者利用计量经济学模型讨论股票市场的趋势变动时,往往是预先建立相当的严密假设,例如回归误差项服从均值为零、方差为常数的分布,且不同期的误差项是不相关的等等。碍于这些经济学研究预设的假设,传统经济学对于股市行为、趋势的研究也因而发生实验室所规划或证明的数学模式往往未能合理的解释现实实际行为。有鉴于此,本研究尝试提出以演化理论产生适应股市行为的规则库,并以再学习的方式对规则作最佳化,期能发现隐藏在股票市场内的知识。 本研究尝试整合分类元系统与倒传递类神经网路,构成:分类元-类神经网路股票交易系统(CNTS)。研究总取样资料为2002年3月1日至2007年3月14日台湾加权指數 1256 笔日资料,并算出每日各项技术指标。CNTS实证之第一部份是将训练资料及测试资料划分为加权指数上涨时机的训练资料集、加权指数下跌时机的训练资料集、加权指数上涨时机的测试资料集、加权指数下跌时机的测试资料集。随后CNTS实证之第二部份以知识纯化模组分别对各资料集进行训练及测试。 实验结果显示,CNTS在二份测试资料上的测试准确率超过50 %,足以显示市场趋势并非随机漫步,且人工智慧技术可帮助投资人对股市进行更准确的预测。 Econometricians build precise hypotheses in advance when they use econometric models to discuss the changing trends in the stock market. But baffled by these unreasonable hypotheses, economics usually can’t explain real behaviors of stock markets very well with mathematical models. Therefore, this research tries to use genetic theories to produce the rule base adapting to the behaviors of stock markets, and then re-learn it to refine those rules, so that hopefully knowledge hidden in the stock market could be discovered. Artificial intelligence models are frequently used in financial analysis in recent years. Compared with the use of many hypotheses and limitations in econometric models, artificial intelligence models are more flexible, able to solve any nonlinear problems, and more suitable to analyze dynamic environments like stock markets. This research combines two Artificial intelligence technologies: extended classifier system and backpropagation neural network to construct a XCS-Neural-network Based Trading System, and we use this system to learn patterns from the environment and then predict values of the test set later. Experiments reveal that all test data in this research have accuracy rate 50% above. Therefore, we are confident to conclude that this system could help investors to make more precise investment decisions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009434524 http://hdl.handle.net/11536/81701 |
显示于类别: | Thesis |