Full metadata record
DC FieldValueLanguage
dc.contributor.author吳玉善en_US
dc.contributor.authorYu-Shan Wuen_US
dc.contributor.author傅心家en_US
dc.contributor.authorHsin-Chia Fuen_US
dc.date.accessioned2014-12-12T03:10:02Z-
dc.date.available2014-12-12T03:10:02Z-
dc.date.issued2006en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009455561en_US
dc.identifier.urihttp://hdl.handle.net/11536/82083-
dc.description.abstract建立一個全自動的新聞故事分段系統是一個重要且富挑戰性的工作。一則新聞故事段落是由主播播報與外景採訪所組成,所以若能夠知道主播出現的時段就能將一個連續的新聞影片自動分段。本篇論文提出一個以偵測人臉為基礎的主播偵測方式。首先偵測每張新聞影像的人臉區域,利用人臉區域取出特徵,以此特徵做分群,假設最大群是主播,進而篩選出主播人臉區域。因為只注意影像中有人臉的區域,不會受到複雜背景的影響,沒有偵測鏡頭轉換的問題;還有在判斷那張影像有主播的過程並沒有使用主播影像模型,所以不需要為了每個主播去調整模型。我們以5個小時不同電視台的整點新聞影片進行主播影像偵測與新聞故事切割的實驗,驗證所提的方法能正確的找出主播出現的時段。論文最後更進一步將所提的方法整合至一個已有的新聞系統中並成功的應用在東森晚間新聞故事的切割上。zh_TW
dc.description.abstractBuilding an automatic system for news story segmentation is an important and challenging task. A news story is composed of an anchorperson shot and a news footage shot, we can segment a news video into several stories if we know when the anchorperson shows up. This paper presents a method for anchorperson detection based on face detection. First, detecting human faces region in every news frame. Then, extracting features by the face region, and clustering on all features. Suppose that the biggest cluster is presented for anchorperson。This method would not effected by the complex background because it focuses only on the face region. And because of its unsupervised nature, the algorithm does not need to adjust model for different anchorpersons. The efficacy of the proposed method is tested on 5 h of news programs. Moreover, we integrate the proposed method to an existed news video library system and segmenting on the ETT news programs successfully.en_US
dc.language.isozh_TWen_US
dc.subject人臉偵測zh_TW
dc.subject分群zh_TW
dc.subject新聞故事zh_TW
dc.subjectFace Detectionen_US
dc.subjectClusteringen_US
dc.subjectNews Storyen_US
dc.title非監督式主播影像偵測於新聞故事分段之研究zh_TW
dc.titleThe Study of Unsupervised Anchorperson Image Detection for News Story Segmentationen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 556101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.