标题: 在静态场景中追踪多个物体演算法
Multiple objects tracking in the video sequence with static scene
作者: 陈峻仪
Jun-Yi Chen
蔡文锦
Wen-Jiin Tsai
资讯科学与工程研究所
关键字: 混合式物体追踪;遮蔽;霍式转换;分水嶺;hybrid object tracking;occlusion;Hough Transform;watershed
公开日期: 2006
摘要: 追踪物体在智慧型监控系统方面是一个受瞩目的议题,如何在发生事
故可以立即得知,并给予及时的帮助。这篇論文提出一个混合式追踪
物体的方法,用來追踪物体的资讯包括有物体的輪廓、颜色、移动的
区域性,会分别产生三个的物体相似度,以及会利用我们提出的相对
应的演算法把这三个相似度整合起來进行物体的追踪。在遮蔽物体方
面,我们储存物体的輪廓资讯,最后利用这些资讯來作为分離相連物
体的依据。本篇論文可以解决物体追踪的问题包括刚性和非刚性物体
的出现、消失、分裂、合并、遮蔽现象于场景中。
In the recent years, there have been significant developments in the field of surveillance systems, where object tracking is a key technology.
This thesis proposes a new hybrid object tracking method which combines region, edge and location-based methods in the algorithms. For region based method, we use watershed to segment objects into several regions. For edge based method, we use Hough Transform to transform edge from image domain to parameter domain for similarity comparison.
The location based method is applied only when both region-based and edge-based methods can’t find the corresponding objects The experimental result shows that the proposed algorithm can track multiple objects in a video sequence with object appearance and disappearance, non-rigid and rigid movements, object splitting and merged as well as object occlusion. The success of tracking rate can be up
to 97.9% for video sequence with static scene.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009455605
http://hdl.handle.net/11536/82126
显示于类别:Thesis


文件中的档案:

  1. 560501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.