Full metadata record
DC FieldValueLanguage
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorChang, Chih-Hungen_US
dc.date.accessioned2014-12-08T15:10:45Z-
dc.date.available2014-12-08T15:10:45Z-
dc.date.issued2008-11-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127408022378en_US
dc.identifier.urihttp://hdl.handle.net/11536/8228-
dc.description.abstractThis investigation elucidates the dense entropy of two-dimensional inhomogeneous cellular neural networks (ICNN) with/without input. It is strongly related to the learning problem (or inverse problem); the necessary and sufficient conditions for the admissibility of local patterns must be characterized. For ICNN with/without input, the entropy function is dense in [ 0, log 2] with respect to the parameter space and the radius of the interacting cells, indicating that, in some sense, ICNN exhibit a wide range of phenomena.en_US
dc.language.isoen_USen_US
dc.subjectEntropyen_US
dc.subjectlearning problemen_US
dc.subjectICNNen_US
dc.titleON THE DENSE ENTROPY OF TWO-DIMENSIONAL INHOMOGENEOUS CELLULAR NEURAL NETWORKSen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127408022378en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume18en_US
dc.citation.issue11en_US
dc.citation.spage3221en_US
dc.citation.epage3231en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000262599200003-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000262599200003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.