完整後設資料紀錄
DC 欄位語言
dc.contributor.author林宗澤en_US
dc.contributor.authorTzong-Tzer Linen_US
dc.contributor.author葉立明en_US
dc.contributor.authorLi-Ming Yehen_US
dc.date.accessioned2014-12-12T03:11:03Z-
dc.date.available2014-12-12T03:11:03Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009022512en_US
dc.identifier.urihttp://hdl.handle.net/11536/82380-
dc.description.abstract火焰片(flame sheet)模型的微分方程式是個非常非線性並且彼此互相相關的系統。在數值上為了解出這些方程式,我們使用了抑制牛頓法(damped Newton's method)並且結合單項網格法(one way multigrid)和Krylov子空間法(Krylov subspace methods)。 本篇論文的目的是研究對此模型下較有效率的Krylov子空間法,例如,雙共軛梯度穩定法(biconjugate gradient stabilized method),廣義最小剩餘法(generalized minimum residual method) 和無轉置的擬最小剩餘法(transpose-free QMR method)。我們已經為此火焰片模型發展了C語言程式碼,並於文章內展示數值結果並且加以討論。zh_TW
dc.description.abstractThe differential equations of flame sheet model are highly nonlinear and strongly coupled system. To solve these equations numerically, we use damped Newton's method combining with one way multigrid method and Krylov subspace methods. The purpose of this thesis is to survey effective Krylov subspace methods for this model, for example, biconjugate gradient stabilized method (BICGSTAB), generalized minimum residual method (GMRES), and transpose-free QMR method (TFQMR). A code for the flame sheet model in C language is developed and numerical results will be presented and discussed in this work.en_US
dc.language.isoen_USen_US
dc.subject火焰片模型zh_TW
dc.subjectKrylov子空間zh_TW
dc.subject抑制牛頓法zh_TW
dc.subject單向網格法zh_TW
dc.subject雙共軛梯度穩定法zh_TW
dc.subject廣義最小剩餘法zh_TW
dc.subject無轉置的擬最小剩餘法zh_TW
dc.subjectflame sheet modelen_US
dc.subjectKrylov subspace methodsen_US
dc.subjectdamped Newton's methoden_US
dc.subjectone way multigriden_US
dc.subjectBICGSTABen_US
dc.subjectGMRESen_US
dc.subjectTFQMRen_US
dc.title計算火焰片模型的數值方法zh_TW
dc.titleNumerical Methods for Computing Flame Sheet Modelen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251201.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。