完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 潘政霖 | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.date.accessioned | 2014-12-12T03:11:09Z | - |
dc.date.available | 2014-12-12T03:11:09Z | - |
dc.date.issued | 2003 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009022528 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/82424 | - |
dc.description.abstract | 若一个方阵X,其所有在对角线下方和最后一行第一列的项是非零,我们称其为cyclic。令C代表一个体,V代表一个有限维布于C的向量空间。我们称一个在V上的cyclic pair,意思是一个有序对的线性变换A:V→V和B:V→V满足下面(i), (ii)的条件。 (i)存在一组V的基底使A在此基底的矩阵表示法为对角矩阵和B在此基底的矩阵表示法为cyclic矩阵。 (ii)存在一组V的基底使B在此基底的矩阵表示法为对角矩阵和A在此基底的矩阵表示法为cyclic矩阵。 我们藉由他们矩阵系数和乘法运算规则来描绘cyclic pair。其中一个规则是和二项式定理相关。 | zh_TW |
dc.description.abstract | A square matrix X is cyclic if all the entries in the lower diagonal and in the last column of the first row are nonzero. Let C denote a field and let V denote a vector space over C with finite positive dimension. By a cyclic pair on V we mean an ordered pair of linear transformations A:V→V and B:V→V that satisfies conditions (i), (ii) below. (i) There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing B is cyclic. (ii) There exists a basis for V with respect to which the matrix representing B is diagonal and the matrix representing A is cyclic. We characterized cyclic pairs by their matrix coefficients, and by their multiplication rules. One of the rules is related to the binomial theorem. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 一对圈形 | zh_TW |
dc.subject | cyclic pair | en_US |
dc.title | 一对圈型的线性变换 | zh_TW |
dc.title | A Cyclic Pair of Linear Transformations | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 应用数学系所 | zh_TW |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.