Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, JHen_US
dc.contributor.authorHwang, WCen_US
dc.date.accessioned2014-12-08T15:02:08Z-
dc.date.available2014-12-08T15:02:08Z-
dc.date.issued1997en_US
dc.identifier.issn0178-2789en_US
dc.identifier.urihttp://hdl.handle.net/11536/824-
dc.description.abstractRadius blends, very important in geometric and solid modeling, can be seen as the trimmed envelope of a rolling sphere or a sweeping circle with a constant or variable radius that centers on a spine curve and touches the surfaces to be blended along the linkage curves. Usually, in variable-radius blending, the radius is difficult to specify, and the spine curve is hard to trace. We propose several geometric constraints to specify the variable radius, which we then translate to a nonlinear system to represent the spine curve exactly. This is finally traced numerically in a high-dimensional space. We also propose a paradigm that implements the constraints while tracing along the spine curve in 3D space. We represent the result in parametric form.en_US
dc.language.isoen_USen_US
dc.subjectgeometric modelingen_US
dc.subjectblendingen_US
dc.subjectvariable-radius spherical and circular blenden_US
dc.subjectspine specificationen_US
dc.titleVariable-radius blending by constrained spine generationen_US
dc.typeArticleen_US
dc.identifier.journalVISUAL COMPUTERen_US
dc.citation.volume13en_US
dc.citation.issue7en_US
dc.citation.spage316en_US
dc.citation.epage329en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1997YA42800002-
dc.citation.woscount20-
Appears in Collections:Articles


Files in This Item:

  1. A1997YA42800002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.