Full metadata record
DC FieldValueLanguage
dc.contributor.authorPao, H. T.en_US
dc.contributor.authorChuang, S. C.en_US
dc.contributor.authorXu, Y. Y.en_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2014-12-08T15:10:51Z-
dc.date.available2014-12-08T15:10:51Z-
dc.date.issued2008-10-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2007.08.055en_US
dc.identifier.urihttp://hdl.handle.net/11536/8295-
dc.description.abstractIn this paper, we propose an EM based learning algorithm to provide a comprehensive procedure for maximizing the measurement of diverse density on given multiple Instances. Furthermore, the new EM based learning framework converts an MI problem into a single-instance treatment by using EM to maximize the instance responsibility for the corresponding label of each bag. To learn a desired image class, a user may select a set of exemplar images and label them to be conceptual related (positive) or conceptual unrelated (negative) images. A positive image consists of at least one object that the user may be interested, and a negative image should not contain any object that the user may be interested. By using the proposed EM based learning algorithm, an image retrieval prototype system is implemented. Experimental results show that for only a few times of relearning cycles, the prototype system can retrieve user's favor images from WWW over Internet. (C) 2007 Published by Elsevier Ltd.en_US
dc.language.isoen_USen_US
dc.subjectmultiple-instance learningen_US
dc.subjectimage retrieveen_US
dc.subjectWWWen_US
dc.subjectEM methoden_US
dc.titleAn EM based multiple instance learning method for image classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2007.08.055en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume35en_US
dc.citation.issue3en_US
dc.citation.spage1468en_US
dc.citation.epage1472en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000257993700087-
dc.citation.woscount15-
Appears in Collections:Articles


Files in This Item:

  1. 000257993700087.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.