Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gonchenko, Sergey | en_US |
dc.contributor.author | Li, Ming-Chia | en_US |
dc.contributor.author | Malkin, Mikhail | en_US |
dc.date.accessioned | 2014-12-08T15:10:52Z | - |
dc.date.available | 2014-12-08T15:10:52Z | - |
dc.date.issued | 2008-10-01 | en_US |
dc.identifier.issn | 0218-1274 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S0218127408022238 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/8311 | - |
dc.description.abstract | We study hyperbolic dynamics and bifurcations for generalized Henon maps in the form (x) over bar = y, (y) over bar = gamma y(1 - y) - bx + alpha xy (with b, alpha small and gamma > 4). Hyperbolic horseshoes with alternating orientation, called half-orientable horseshoes, are proved to represent the nonwandering set of the maps in certain parameter regions. We show that there are infinitely many classes of such horseshoes with respect to the local topological conjugacy. We also study transitions from the usual orientable and nonorientable horseshoes to half-orientable ones (and vice versa) as parameters vary. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Henon map | en_US |
dc.subject | Smale horseshoe | en_US |
dc.subject | half-orientable horseshoe | en_US |
dc.subject | hyperbolic dynamics | en_US |
dc.subject | nonwandering set | en_US |
dc.subject | singular bifurcation | en_US |
dc.title | GENERALIZED HENON MAPS AND SMALE HORSESHOES OF NEW TYPES | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S0218127408022238 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.issue | 10 | en_US |
dc.citation.spage | 3029 | en_US |
dc.citation.epage | 3052 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000262608200009 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.