完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Hua-Fuen_US
dc.contributor.authorShan, Man-Kwanen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.date.accessioned2014-12-08T15:10:52Z-
dc.date.available2014-12-08T15:10:52Z-
dc.date.issued2008-10-01en_US
dc.identifier.issn0219-1377en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10115-007-0112-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/8314-
dc.description.abstractOnline mining of data streams is an important data mining problem with broad applications. However, it is also a difficult problem since the streaming data possess some inherent characteristics. In this paper, we propose a new single-pass algorithm, called DSM-FI (data stream mining for frequent itemsets), for online incremental mining of frequent itemsets over a continuous stream of online transactions. According to the proposed algorithm, each transaction of the stream is projected into a set of sub-transactions, and these sub-transactions are inserted into a new in-memory summary data structure, called SFI-forest (summary frequent itemset forest) for maintaining the set of all frequent itemsets embedded in the transaction data stream generated so far. Finally, the set of all frequent itemsets is determined from the current SFI-forest. Theoretical analysis and experimental studies show that the proposed DSM-FI algorithm uses stable memory, makes only one pass over an online transactional data stream, and outperforms the existing algorithms of one-pass mining of frequent itemsets.en_US
dc.language.isoen_USen_US
dc.subjectData miningen_US
dc.subjectData streamsen_US
dc.subjectFrequent itemsetsen_US
dc.subjectSingle-pass algorithmen_US
dc.subjectLandmark windowen_US
dc.titleDSM-FI: an efficient algorithm for mining frequent itemsets in data streamsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10115-007-0112-4en_US
dc.identifier.journalKNOWLEDGE AND INFORMATION SYSTEMSen_US
dc.citation.volume17en_US
dc.citation.issue1en_US
dc.citation.spage79en_US
dc.citation.epage97en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000259960200005-
dc.citation.woscount15-
顯示於類別:期刊論文


文件中的檔案:

  1. 000259960200005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。