完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPao, Hsiao-Tienen_US
dc.date.accessioned2014-12-08T15:10:54Z-
dc.date.available2014-12-08T15:10:54Z-
dc.date.issued2008-10-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2007.07.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/8331-
dc.description.abstractEmpirical studies of the variation in debt ratios across firms have used statistical models singularly to analyze the important determinants of capital structure. Researchers, however, rarely employ non-linear models to examine the determinants and make little effort to identify a superior prediction model. This study adopts multiple linear regressions and artificial neural networks (ANN) models with seven explanatory variables of corporation's feature and three external macro-economic control variables to analyze the important determinants of capital structures of the high-tech and traditional industries in Taiwan, respectively. Results of this study show that the determinants of capital structure are different in both industries. The major different determinants are business-risk and growth opportunities. Based on the values of RMSE, the ANN models achieve a better fit and forecast than the regression models for debt ratio, and ANNs are cable of catching sophisticated non-linear integrating effects in both industries. It seems that the relationships between debt ratio and independent variables are not linear. Managers can apply these results for their dynamic adjustment of capital structure in achieving optimality and maximizing firm's value. (c) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcapital structureen_US
dc.subjectmultiple regression modelen_US
dc.subjectartificial neural network modelen_US
dc.titleA comparison of neural network and multiple regression analysis in modeling capital structureen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2007.07.018en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume35en_US
dc.citation.issue3en_US
dc.citation.spage720en_US
dc.citation.epage727en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000257993700016-
dc.citation.woscount11-
顯示於類別:期刊論文


文件中的檔案:

  1. 000257993700016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。