完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Qianshunen_US
dc.contributor.authorWong, Yau-Shuen_US
dc.contributor.authorLin, Chi-Kunen_US
dc.date.accessioned2014-12-08T15:10:54Z-
dc.date.available2014-12-08T15:10:54Z-
dc.date.issued2008-10-01en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2008.05.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/8337-
dc.description.abstractThis paper presents and compares various numerical techniques for the long-wave short-wave interaction equations. In addition to the standard explicit, implicit schemes and the spectral methods, a novel scheme SRK which is based on a time-splitting approach combined with the Runge-Kutta method is presented. We demonstrate that not only the SRK scheme is efficient compared to the split step spectral methods, but it can apply directly to problems with general boundary conditions. The conservation properties of the numerical schemes are discussed. Numerical simulations are reported for case studies with different types of initial data. The present study enhances our understanding of the behavior of nonlinear dispersive waves in the semi-classical limit. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectnumerical methodsen_US
dc.subjectfinite-difference schemesen_US
dc.subjectlong-wave short-wave interaction equationsen_US
dc.subjectsemi-classical limiten_US
dc.titleNumerical computations for long-wave short-wave interaction equations in semi-classical limiten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2008.05.015en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume227en_US
dc.citation.issue19en_US
dc.citation.spage8489en_US
dc.citation.epage8507en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000259753700001-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000259753700001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。