Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorLi, Shih-Chungen_US
dc.contributor.authorLi, Shih-Yuen_US
dc.contributor.authorChang, Ching-Mingen_US
dc.date.accessioned2014-12-08T15:10:55Z-
dc.date.available2014-12-08T15:10:55Z-
dc.date.issued2008-09-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2008.05.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/8352-
dc.description.abstractA new pragmatical adaptive control method for different chaotic systems is proposed. Traditional chaos control is limited to decrease chaos of one chaotic system. This method enlarges the effective scope of chaos control. We can control a chaotic system, e.g. a new chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic double Duffing system or to a damped simple harmonic system. By a pragmatical theorem of asymptotical stability based on an assumption of equal probability of initial point, an adaptive control law is derived such that it can be proved strictly that the common zero solution of error dynamics and of parameter dynamics is asymptotically stable. Numerical simulations are given to show the effectiveness of the proposed scheme. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpragmatical adaptive controlen_US
dc.subjectdouble van der Pol systemen_US
dc.subjectdouble Duffing systemen_US
dc.subjectuncoupled chaotic systemen_US
dc.titlePragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2008.05.011en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume203en_US
dc.citation.issue2en_US
dc.citation.spage513en_US
dc.citation.epage522en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000259313700006-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000259313700006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.