完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorLi, Shih-Chungen_US
dc.contributor.authorLi, Shih-Yuen_US
dc.contributor.authorChang, Ching-Mingen_US
dc.date.accessioned2014-12-08T15:10:55Z-
dc.date.available2014-12-08T15:10:55Z-
dc.date.issued2008-09-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2008.05.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/8352-
dc.description.abstractA new pragmatical adaptive control method for different chaotic systems is proposed. Traditional chaos control is limited to decrease chaos of one chaotic system. This method enlarges the effective scope of chaos control. We can control a chaotic system, e.g. a new chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic double Duffing system or to a damped simple harmonic system. By a pragmatical theorem of asymptotical stability based on an assumption of equal probability of initial point, an adaptive control law is derived such that it can be proved strictly that the common zero solution of error dynamics and of parameter dynamics is asymptotically stable. Numerical simulations are given to show the effectiveness of the proposed scheme. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpragmatical adaptive controlen_US
dc.subjectdouble van der Pol systemen_US
dc.subjectdouble Duffing systemen_US
dc.subjectuncoupled chaotic systemen_US
dc.titlePragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2008.05.011en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume203en_US
dc.citation.issue2en_US
dc.citation.spage513en_US
dc.citation.epage522en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000259313700006-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000259313700006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。