Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Michaelen_US
dc.date.accessioned2014-12-08T15:10:59Z-
dc.date.available2014-12-08T15:10:59Z-
dc.date.issued2008-09-01en_US
dc.identifier.issn0963-5483en_US
dc.identifier.urihttp://dx.doi.org/10.1017/S0963548308009243en_US
dc.identifier.urihttp://hdl.handle.net/11536/8418-
dc.description.abstractWe study the number of subtrees on the fringe of random recursive trees and random binary search trees whose limit law is known to be either normal or Poisson or degenerate depending on the size of the subtree. We introduce a new approach to this problem which helps us to further clarify this phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the normal range and prove a Poisson approximation result as the subtree size tends to infinity.en_US
dc.language.isoen_USen_US
dc.titleSubtree Sizes in Recursive Trees and Binary Search Trees: Berry-Esseen Bounds and Poisson Approximationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0963548308009243en_US
dc.identifier.journalCOMBINATORICS PROBABILITY & COMPUTINGen_US
dc.citation.volume17en_US
dc.citation.issue5en_US
dc.citation.spage661en_US
dc.citation.epage680en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000260205800003-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000260205800003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.