完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFuchs, Michaelen_US
dc.date.accessioned2014-12-08T15:10:59Z-
dc.date.available2014-12-08T15:10:59Z-
dc.date.issued2008-09-01en_US
dc.identifier.issn0963-5483en_US
dc.identifier.urihttp://dx.doi.org/10.1017/S0963548308009243en_US
dc.identifier.urihttp://hdl.handle.net/11536/8418-
dc.description.abstractWe study the number of subtrees on the fringe of random recursive trees and random binary search trees whose limit law is known to be either normal or Poisson or degenerate depending on the size of the subtree. We introduce a new approach to this problem which helps us to further clarify this phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the normal range and prove a Poisson approximation result as the subtree size tends to infinity.en_US
dc.language.isoen_USen_US
dc.titleSubtree Sizes in Recursive Trees and Binary Search Trees: Berry-Esseen Bounds and Poisson Approximationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0963548308009243en_US
dc.identifier.journalCOMBINATORICS PROBABILITY & COMPUTINGen_US
dc.citation.volume17en_US
dc.citation.issue5en_US
dc.citation.spage661en_US
dc.citation.epage680en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000260205800003-
dc.citation.woscount6-
顯示於類別:期刊論文


文件中的檔案:

  1. 000260205800003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。