Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Chung-Mengen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:11:02Z-
dc.date.available2014-12-08T15:11:02Z-
dc.date.issued2008-08-16en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2008.02.013en_US
dc.identifier.urihttp://hdl.handle.net/11536/8461-
dc.description.abstractAssume that n is a positive integer with n >= 2. It is proved that between any two different vertices x and y of Q(n) there exists a path PI(x, y) of length l for any l with h(x, y) <= l <= 2(n) - 1 and 2 vertical bar(l - h(x, y)). We expect such path P-l(x, y) can be further extended by including the vertices not in P-l(x, y) into a hamiltonian path from x to a fixed vertex z or a hamiltonian cycle. In this paper, we prove that for any two vertices x and z from different partite set of n-dimensional hypercube Q(n), for any vertex y is an element of V(Q(n)) - {x, z}, and for any integer I with h(x, y) <= l <= 2(n) - l - h(y, z) and 2 vertical bar(l - h(x, y)), there exists a hamiltonian path R(x, y, z; l) from x to z such that d(R(x,y,z,l))(x, y) = l. Moreover, for any two distinct vertices x and y of Q,, and for any integer I with h(x, y) <= l <= 2(n-1) and 2 vertical bar(l - h(x, y)), there exists a hamiltonian cycle S(x, y; l) such that d(S(X,y;l))(x, y) = l. (C) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectinterconnection networksen_US
dc.titleEmbedding hamiltonian paths in hypercubes with a required vertex in a fixed positionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2008.02.013en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume107en_US
dc.citation.issue5en_US
dc.citation.spage171en_US
dc.citation.epage176en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000258517800008-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000258517800008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.