Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:11:06Z-
dc.date.available2014-12-08T15:11:06Z-
dc.date.issued2008-08-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2008.03.029en_US
dc.identifier.urihttp://hdl.handle.net/11536/8506-
dc.description.abstractFor any operator A on a Hilbert space, let W(A), w(A) and w(0)(A) denote its numerical range, numerical radius and the distance from the origin to the boundary of its numerical range, respectively. We prove that if A(n) = 0, then w(A) <= (n - 1)w(0)(A), and, moreover, if A attains its numerical radius, then the following are equivalent: (1) w(A) = (n - 1)w(0)(A), (2)A is unitarily equivalent to an operator of the form aA(n) circle plus A', where a is a scalar satisfying vertical bar a vertical bar = 2w(0)(A), A(n) is the n-by-n matrix [GRAPHICS] and A' is some other operator, and (3) W(A) = bW(A(n)) for some scalar b. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectnumerical rangeen_US
dc.subjectnumerical radiusen_US
dc.subjectnilpotent operatoren_US
dc.titleNumerical ranges of nilpotent operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2008.03.029en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume429en_US
dc.citation.issue4en_US
dc.citation.spage716en_US
dc.citation.epage726en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000257638600004-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000257638600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.