Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Tayuanen_US
dc.contributor.authorWang, Kaishunen_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2014-12-08T15:11:06Z-
dc.date.available2014-12-08T15:11:06Z-
dc.date.issued2008-08-01en_US
dc.identifier.issn0195-6698en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ejc.2007.06.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/8515-
dc.description.abstractMotivated by the works of Ngo and Du [H. Ngo, D. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 55 (2000) 171-182], the notion of pooling spaces was introduced IT. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Mathematics 282 (2004) 163-169] for a systematic way of constructing pooling designs; note that geometric lattices are among pooling spaces. This paper attempts to draw possible connections from finite geometry and distance regular graphs to pooling spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a few families of geometric lattices associated with the orbits of subspaces under finite classical groups, and associated with d-bounded distance-regular graphs. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titlePooling spaces associated with finite geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejc.2007.06.017en_US
dc.identifier.journalEUROPEAN JOURNAL OF COMBINATORICSen_US
dc.citation.volume29en_US
dc.citation.issue6en_US
dc.citation.spage1483en_US
dc.citation.epage1491en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000257047200010-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000257047200010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.