完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Tayuan | en_US |
dc.contributor.author | Wang, Kaishun | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2014-12-08T15:11:06Z | - |
dc.date.available | 2014-12-08T15:11:06Z | - |
dc.date.issued | 2008-08-01 | en_US |
dc.identifier.issn | 0195-6698 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ejc.2007.06.017 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/8515 | - |
dc.description.abstract | Motivated by the works of Ngo and Du [H. Ngo, D. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 55 (2000) 171-182], the notion of pooling spaces was introduced IT. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Mathematics 282 (2004) 163-169] for a systematic way of constructing pooling designs; note that geometric lattices are among pooling spaces. This paper attempts to draw possible connections from finite geometry and distance regular graphs to pooling spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a few families of geometric lattices associated with the orbits of subspaces under finite classical groups, and associated with d-bounded distance-regular graphs. (C) 2007 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Pooling spaces associated with finite geometry | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ejc.2007.06.017 | en_US |
dc.identifier.journal | EUROPEAN JOURNAL OF COMBINATORICS | en_US |
dc.citation.volume | 29 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 1483 | en_US |
dc.citation.epage | 1491 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000257047200010 | - |
dc.citation.woscount | 9 | - |
顯示於類別: | 期刊論文 |