Title: | Numerical study of phonon radiative transfer in porous nanostructures |
Authors: | Li, Sheng-Yen Chu, Hsin-Sen Yan, Wei-Mon 機械工程學系 Department of Mechanical Engineering |
Issue Date: | 15-Jul-2008 |
Abstract: | This study analyzes the phonon radiative transfer in two-dimensional porous silicon nanostructures with a phonon transport model based on the Boltzmann transportation equation. We focus on the inter-scattering between pores. The numerical results show that when the aspect ratio is less than 1.22, the scale factor dominates the thermal conductivity, and the thermal conductivity of nanostructures with in-line arrangement pores is determined by the dependent phonon scattering effect. In nanostructures with staggered arrangement pores, the phonons are prevented from transporting through the material. In general, the results show that the larger the pore size, the lower the thermal conductivity of the nanostructure. The results presented in this study provide a useful reference for the development of high-efficiency thermoelectric structures. (C) 2008 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.004 http://hdl.handle.net/11536/8573 |
ISSN: | 0017-9310 |
DOI: | 10.1016/j.ijheatmasstransfer.2008.01.004 |
Journal: | INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER |
Volume: | 51 |
Issue: | 15-16 |
Begin Page: | 3924 |
End Page: | 3931 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.