Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, H. L.en_US
dc.contributor.authorLogan, S. L.en_US
dc.contributor.authorRodger, C. A.en_US
dc.date.accessioned2014-12-08T15:11:12Z-
dc.date.available2014-12-08T15:11:12Z-
dc.date.issued2008-07-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2006.09.059en_US
dc.identifier.urihttp://hdl.handle.net/11536/8583-
dc.description.abstractA set S of edge-disjoint hamilton cycles in a graph T is said to be maximal if the hamilton cycles in S form a subgraph of T such that T - E(S) has no hamilton cycle. The spectrum of a graph T is the set of integers in such that T contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has previously been determined for all complete graphs, all complete bipartite graphs, and many complete multipartite graphs. One of the outstanding problems is to find the spectrum for the graphs formed by removing the edges of a I-factor, F, from a complete graph, K(2p). In this paper we completely solve this problem, giving two substantially different proofs. One proof uses amalgamations, and is of interest in its own right because it is the first example of an amalgamation where vertices from different parts are amalgamated. The other is a neat direct proof. (c) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonen_US
dc.subjectmaximalen_US
dc.subjectamalgamationsen_US
dc.titleMaximal sets of hamilton cycles in K(2p)-Fen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2006.09.059en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume308en_US
dc.citation.issue13en_US
dc.citation.spage2822en_US
dc.citation.epage2829en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000256107600020-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000256107600020.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.