完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Cave, H. M. | en_US |
dc.contributor.author | Tseng, K. -C. | en_US |
dc.contributor.author | Wu, J. -S. | en_US |
dc.contributor.author | Jermy, M. C. | en_US |
dc.contributor.author | Huang, J. -C. | en_US |
dc.contributor.author | Krumdieck, S. P. | en_US |
dc.date.accessioned | 2014-12-08T15:11:28Z | - |
dc.date.available | 2014-12-08T15:11:28Z | - |
dc.date.issued | 2008-06-01 | en_US |
dc.identifier.issn | 0021-9991 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jcp.2008.03.015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/8795 | - |
dc.description.abstract | An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study. (c) 2008 Published by Elsevier Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | DSMC | en_US |
dc.subject | unsteady | en_US |
dc.subject | shock tube | en_US |
dc.subject | shock impingement | en_US |
dc.subject | Couette flow | en_US |
dc.subject | PDSC | en_US |
dc.subject | DREAM | en_US |
dc.title | Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jcp.2008.03.015 | en_US |
dc.identifier.journal | JOURNAL OF COMPUTATIONAL PHYSICS | en_US |
dc.citation.volume | 227 | en_US |
dc.citation.issue | 12 | en_US |
dc.citation.spage | 6249 | en_US |
dc.citation.epage | 6271 | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
dc.identifier.wosnumber | WOS:000256502100016 | - |
dc.citation.woscount | 9 | - |
顯示於類別: | 期刊論文 |